Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор C J G Evertsz
Автор P W Jones
Автор B B Mandelbrot
Дата выпуска 1991-04-21
dc.description Diffusion-limited aggregates are among many important fractal shapes that involve deep indentations usually called fjords. To estimate the harmonic measure at the bottom of a fjord seems a prohibitive task, but the authors find that a new mathematical equality due to Beurling, Carleson and Jones makes it easy. They find that the harmonic measure at the bottom of a fjord, as a function of its Euclidean depth, can exhibit a wide range of behaviours. They introduce an infinite family of model fjords, for which the equality takes a very simple form. In this family the decay of the harmonic measure at their bottoms can be, for example, power law, semi-exponential, stretched exponential and exponentially stretched exponential. They show that self-affinity or randomness can lead to faster than power law decays of the minimal growth probability on boundaries.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Behaviour of the harmonic measure at the bottom of fjords
Тип paper
DOI 10.1088/0305-4470/24/8/028
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 24
Первая страница 1889
Последняя страница 1901
Аффилиация C J G Evertsz; Dept. of Appl. Phys., Yale Univ., New Haven, CT, USA
Аффилиация P W Jones; Dept. of Appl. Phys., Yale Univ., New Haven, CT, USA
Аффилиация B B Mandelbrot; Dept. of Appl. Phys., Yale Univ., New Haven, CT, USA
Выпуск 8

Скрыть метаданые