Автор |
D Levi |
Автор |
M A Rodriguez |
Дата выпуска |
1992-08-07 |
dc.description |
The authors correlate the symmetry group of the continuous transformations of the Toda lattice to that of the Korteweg-de Vries equation. They show how, by taking into account the continuous limit of the Toda lattice the four-parameter symmetry group of the Toda lattice is contained in that of the KdV equation. By an inverse process, discretization of the symmetry group of the KdV equation, they find a discrete element of the symmetry group of the Toda lattice, which gives, by symmetry reduction, its soliton solution. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Symmetry group of partial differential equations and of differential difference equations: the Toda lattice versus the Korteweg-de Vries equation |
Тип |
lett |
DOI |
10.1088/0305-4470/25/15/013 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
25 |
Первая страница |
L975 |
Последняя страница |
L979 |
Аффилиация |
D Levi; Dipartimento di Fisica, Roma Univ., Italy |
Аффилиация |
M A Rodriguez; Dipartimento di Fisica, Roma Univ., Italy |
Выпуск |
15 |