Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор P Y Tong
Автор K W Yu
Дата выпуска 1992-02-21
dc.description The authors have investigated the multifractal scaling of conductance jumps in a hierarchical percolation lattice, resulting from cutting the current carrying bonds in the lattice. Due to the iterative nature of the model, exact renormalization group (RG) equations are obtained and used to extract the minimum conductance jump of the lattice. They find an asymptotically analytic expression for the minimum conductance jump, Delta g<sub>min</sub> approximately=exp(-c(log L)<sup>2</sup>) decreasing faster than any power law. They observed slow convergence to the asymptotic behaviour due to the importance of the irrelevant terms in the RG equations at low generations of the lattice. Numerical calculations are performed in order to validate the analytic results and to calculate the f- alpha spectrum to confirm left-sided multifractality as proposed by Lee and Stanley (1988).
Формат application.pdf
Издатель Institute of Physics Publishing
Название Anomalous multifractality of conductance jumps in a hierarchical percolation model
Тип paper
DOI 10.1088/0305-4470/25/4/018
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 25
Первая страница 797
Последняя страница 805
Аффилиация P Y Tong; Dept. of Phys., Chinese Univ. of Hong Kong, Shatin, Hong Kong
Аффилиация K W Yu; Dept. of Phys., Chinese Univ. of Hong Kong, Shatin, Hong Kong
Выпуск 4

Скрыть метаданые