Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор R Meir
Автор J F Fontanari
Дата выпуска 1992-03-07
dc.description The authors study learning and generalization in single-layer feedforward networks, whose weights are constrained to take on a discrete set of values. Their analytic results are obtained within the replica approach, which is verified through Monte Carlo simulations. It is shown that, depending on the architecture of the network and on the source of the training examples, three qualitatively different behaviours emerge. This distinction, which is manifested through the dependence of the training and generalization errors on the size of the training set suggests a possible way to determine the suitability of the architecture to the learning task. They conjecture that this distinction is relevant to the more interesting case of multi-layered networks.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Learning from examples in weight-constrained neural networks
Тип paper
DOI 10.1088/0305-4470/25/5/021
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 25
Первая страница 1149
Последняя страница 1168
Аффилиация R Meir; Bellcore, Morristown, NJ, USA
Аффилиация J F Fontanari; Bellcore, Morristown, NJ, USA
Выпуск 5

Скрыть метаданые