Автор |
Zhe Chang |
Автор |
Han-Ying Guo |
Автор |
Hong Yan |
Дата выпуска |
1992-03-21 |
dc.description |
The authors introduce a pair of canonical-conjugate q-deformed operators D, X and discuss the relations between the deformed operators D, X and q-series. The realizations of some Lie symmetries, Heisenberg and quantum Heisenberg algebras are given for the operators D and X. They show that the q-analogous Hermite polynomials are representations of Heisenberg and quantum Heisenberg algebras realized in this way. When q is a root of unity, the properties of the q-analogous Hermite polynomials are also discussed. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
The q-Hermite polynomial and the representations of Heisenberg and quantum Heisenberg algebras |
Тип |
paper |
DOI |
10.1088/0305-4470/25/6/012 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
25 |
Первая страница |
1517 |
Последняя страница |
1525 |
Аффилиация |
Zhe Chang; CCAST, World Lab., Beijing, China |
Аффилиация |
Han-Ying Guo; CCAST, World Lab., Beijing, China |
Аффилиация |
Hong Yan; CCAST, World Lab., Beijing, China |
Выпуск |
6 |