Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Zhe Chang
Автор Han-Ying Guo
Автор Hong Yan
Дата выпуска 1992-03-21
dc.description The authors introduce a pair of canonical-conjugate q-deformed operators D, X and discuss the relations between the deformed operators D, X and q-series. The realizations of some Lie symmetries, Heisenberg and quantum Heisenberg algebras are given for the operators D and X. They show that the q-analogous Hermite polynomials are representations of Heisenberg and quantum Heisenberg algebras realized in this way. When q is a root of unity, the properties of the q-analogous Hermite polynomials are also discussed.
Формат application.pdf
Издатель Institute of Physics Publishing
Название The q-Hermite polynomial and the representations of Heisenberg and quantum Heisenberg algebras
Тип paper
DOI 10.1088/0305-4470/25/6/012
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 25
Первая страница 1517
Последняя страница 1525
Аффилиация Zhe Chang; CCAST, World Lab., Beijing, China
Аффилиация Han-Ying Guo; CCAST, World Lab., Beijing, China
Аффилиация Hong Yan; CCAST, World Lab., Beijing, China
Выпуск 6

Скрыть метаданые