Автор |
I Dayan |
Автор |
S Havlin |
Дата выпуска |
1992-05-07 |
dc.description |
The authors study the number of distinct sites visited by a random walker in d=1 after t steps, S(t), in the presence of a trap. They calculate the distribution q(S, t) of S(t) in the limit of large t. They find an unusual crossover in the probability density at S approximately=S<sub>x</sub> identical to Dt. For S<<S<sub>x</sub>, q(S, t) approximately S<sup>-2</sup> and for S>>S<sub>x</sub>, q(S, t) approximately St<sup>-3/2</sup> exp(-S<sup>2/4</sup>Dt). Fro this crossover it follows that the mean number of distinct sites visited is (S(t)) approximately In(t). |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Number of distinct sites visited by a random walker in the presence of a trap |
Тип |
lett |
DOI |
10.1088/0305-4470/25/9/008 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
25 |
Первая страница |
L549 |
Последняя страница |
L553 |
Аффилиация |
I Dayan; Dept. of Phys., Bar-Ilan Univ., Ramat-Gan, Israel |
Аффилиация |
S Havlin; Dept. of Phys., Bar-Ilan Univ., Ramat-Gan, Israel |
Выпуск |
9 |