| Автор | I Dayan |
| Автор | S Havlin |
| Дата выпуска | 1992-05-07 |
| dc.description | The authors study the number of distinct sites visited by a random walker in d=1 after t steps, S(t), in the presence of a trap. They calculate the distribution q(S, t) of S(t) in the limit of large t. They find an unusual crossover in the probability density at S approximately=S<sub>x</sub> identical to Dt. For S<<S<sub>x</sub>, q(S, t) approximately S<sup>-2</sup> and for S>>S<sub>x</sub>, q(S, t) approximately St<sup>-3/2</sup> exp(-S<sup>2/4</sup>Dt). Fro this crossover it follows that the mean number of distinct sites visited is (S(t)) approximately In(t). |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | Number of distinct sites visited by a random walker in the presence of a trap |
| Тип | lett |
| DOI | 10.1088/0305-4470/25/9/008 |
| Print ISSN | 0305-4470 |
| Журнал | Journal of Physics A: Mathematical and General |
| Том | 25 |
| Первая страница | L549 |
| Последняя страница | L553 |
| Аффилиация | I Dayan; Dept. of Phys., Bar-Ilan Univ., Ramat-Gan, Israel |
| Аффилиация | S Havlin; Dept. of Phys., Bar-Ilan Univ., Ramat-Gan, Israel |
| Выпуск | 9 |