Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор W H Klink
Автор Tuong Ton-That
Автор R G Wills
Дата выпуска 1993-07-07
dc.description A computationally effective method for decomposing r-fold tensor products of irreducible representations of U(N) in a basis-independent fashion is given. The multiplicity arising from the tensor decomposition is resolved with the eigenvalues of invariant operators chosen from the universal enveloping algebra generated by the infinitesimal operators of the dual (or complementary) representation. Shift operators which commute with the U(N) invariant operators, but not the dual invariant operators, are introduced to compute the eigenvectors and eigenvalues of the dual invariant operators algebraically. A three-fold tensor product of irreducible representations of SU(4) is decomposed to illustrate the power and generality of the method.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Shift operators and the U(N) multiplicity problem
Тип paper
DOI 10.1088/0305-4470/26/13/025
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 26
Первая страница 3229
Последняя страница 3242
Аффилиация W H Klink; Iowa Univ., Iowa City, IA, USA
Аффилиация Tuong Ton-That; Iowa Univ., Iowa City, IA, USA
Аффилиация R G Wills; Iowa Univ., Iowa City, IA, USA
Выпуск 13

Скрыть метаданые