Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор O B Zaslavskii
Дата выпуска 1993-11-21
dc.description A new method of obtaining many-dimensional quasi-exactly-solvable models is suggested. It is based on constructing the generating function with the help of coefficients which obey a finite difference equation. The structure of this equation is selected to obtain the closed second-order differential equation for the generating function. Under some conditions this equation can be thought of as the Schrodinger equation in curved space. For the two-dimensional case the many-parametric class of solution is found explicitly. The spherically-symmetrical case is investigated in detail. It is shown that this case contains spaces of a constant Riemann curvature of both signs.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Quasi-exactly-solvable models from finite-dimensional matrices
Тип paper
DOI 10.1088/0305-4470/26/22/048
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 26
Первая страница 6563
Последняя страница 6574
Аффилиация O B Zaslavskii; Dept. of Phys., Kharkov State Univ., Ukraine
Выпуск 22

Скрыть метаданые