Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор S Brundobler
Автор Veit Elser
Дата выпуска 1993-03-07
dc.description The Schrodinger equation i Psi =(A+Bt) Psi with constant Hermitian matrices A and B is studied. In the form where B is diagonalized, this equation is a generalization of the Landau-Zener problem to an arbitrary number of crossing energy levels. An approach-the independent crossing approximation-leading to a partial understanding of the general case in terms of the two-level problem is introduced. It is found that certain S-matrix elements (and thus the corresponding transition probabilities) for the general problem are exactly given by formulae of unexpected simplicity, suggesting that some kind of general analytic solution might exist. The full S-matrix is calculated for a solvable special case of the problem. The solution of another special case, previously discovered for systems with three states, is generalized to any number of states. The asymptotic behaviour of the system is discussed in general and given explicitly to lowest order in 1/t.
Формат application.pdf
Издатель Institute of Physics Publishing
Название S-matrix for generalized Landau-Zener problem
Тип paper
DOI 10.1088/0305-4470/26/5/037
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 26
Первая страница 1211
Последняя страница 1227
Аффилиация S Brundobler; Lab. of Atomic & Solid State Phys., Cornell Univ., Ithaca, NY, USA
Аффилиация Veit Elser; Lab. of Atomic & Solid State Phys., Cornell Univ., Ithaca, NY, USA
Выпуск 5

Скрыть метаданые