Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор A O Barut
Автор J R Zeni
Автор A Laufer
Дата выпуска 1994-08-07
dc.description We present a general method to obtain a closed finite formula for the exponential map from the Lie algebra to the Lie group for the defining representation of orthogonal groups. Our method is based on the Hamilton-Cayley theorem and some special properties of the generators of the orthogonal group and is also independent of the metric. We present an explicit formula for the exponential of generators of the SO<sub>+</sub>(p,q) groups with p+q=6, in particular, dealing with the conformal group SO<sub>+</sub>(2,4) which is homomorphic to the SU(2,2) group. This result is needed in the generalization of U(1)-gauge transformations to spin-gauge transformations where the exponential plays an essential role. We also present some new expressions for the coefficients of the secular equation of a matrix.
Формат application.pdf
Издатель Institute of Physics Publishing
Название The exponential map for the conformal group O(2,4)
Тип paper
DOI 10.1088/0305-4470/27/15/022
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 27
Первая страница 5239
Последняя страница 5250
Аффилиация A O Barut; Dept. of Phys., Colorado Univ., Boulder, CO, USA
Аффилиация J R Zeni; Dept. of Phys., Colorado Univ., Boulder, CO, USA
Аффилиация A Laufer; Dept. of Phys., Colorado Univ., Boulder, CO, USA
Выпуск 15

Скрыть метаданые