Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор S D Prado
Автор M A M de Aguiar
Автор J P Keating
Автор R Egydio de Carvalho
Дата выпуска 1994-09-21
dc.description We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Semiclassical theory of magnetization for a two-dimensional non-interacting electron gas
Тип paper
DOI 10.1088/0305-4470/27/18/018
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 27
Первая страница 6091
Последняя страница 6106
Аффилиация S D Prado; Inst. de Fisica Gleb Wataghin, Univ. Estadual de Campinas, Sao Paulo, Brazil
Аффилиация M A M de Aguiar; Inst. de Fisica Gleb Wataghin, Univ. Estadual de Campinas, Sao Paulo, Brazil
Аффилиация J P Keating; Inst. de Fisica Gleb Wataghin, Univ. Estadual de Campinas, Sao Paulo, Brazil
Аффилиация R Egydio de Carvalho; Inst. de Fisica Gleb Wataghin, Univ. Estadual de Campinas, Sao Paulo, Brazil
Выпуск 18

Скрыть метаданые