Автор |
J C Eilbeck |
Автор |
V Z Enol'skii |
Автор |
V B Kuznetsov |
Автор |
A V Tsiganov |
Дата выпуска |
1994-01-21 |
dc.description |
We consider a hierarchy of the natural-type Hamiltonian systems of n degrees of freedom with polynomial potentials separable in general ellipsoidal and general paraboloidal coordinates. We give a Lax representation in terms of 2*2 matrices for the whole hierarchy and construct the associated linear r-matrix algebra with the r-matrix dependent on the dynamical variables. A Yang-Baxter equation of dynamical type is proposed. Using the method of variable separation, we provide the integration of the systems in classical mechanics constructing the separation equations and, hence, the explicit form of action variables. The quantization problem is discussed with the help of the separation variables. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Linear r-matrix algebra for classical separable systems |
Тип |
paper |
DOI |
10.1088/0305-4470/27/2/038 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
27 |
Первая страница |
567 |
Последняя страница |
578 |
Аффилиация |
J C Eilbeck; Dept. of Math., Heriot-Watt Univ., Edinburgh, UK |
Аффилиация |
V Z Enol'skii; Dept. of Math., Heriot-Watt Univ., Edinburgh, UK |
Аффилиация |
V B Kuznetsov; Dept. of Math., Heriot-Watt Univ., Edinburgh, UK |
Аффилиация |
A V Tsiganov; Dept. of Math., Heriot-Watt Univ., Edinburgh, UK |
Выпуск |
2 |