Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор J C Eilbeck
Автор V Z Enol'skii
Автор V B Kuznetsov
Автор A V Tsiganov
Дата выпуска 1994-01-21
dc.description We consider a hierarchy of the natural-type Hamiltonian systems of n degrees of freedom with polynomial potentials separable in general ellipsoidal and general paraboloidal coordinates. We give a Lax representation in terms of 2*2 matrices for the whole hierarchy and construct the associated linear r-matrix algebra with the r-matrix dependent on the dynamical variables. A Yang-Baxter equation of dynamical type is proposed. Using the method of variable separation, we provide the integration of the systems in classical mechanics constructing the separation equations and, hence, the explicit form of action variables. The quantization problem is discussed with the help of the separation variables.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Linear r-matrix algebra for classical separable systems
Тип paper
DOI 10.1088/0305-4470/27/2/038
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 27
Первая страница 567
Последняя страница 578
Аффилиация J C Eilbeck; Dept. of Math., Heriot-Watt Univ., Edinburgh, UK
Аффилиация V Z Enol'skii; Dept. of Math., Heriot-Watt Univ., Edinburgh, UK
Аффилиация V B Kuznetsov; Dept. of Math., Heriot-Watt Univ., Edinburgh, UK
Аффилиация A V Tsiganov; Dept. of Math., Heriot-Watt Univ., Edinburgh, UK
Выпуск 2

Скрыть метаданые