Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор R Hilfer
Автор N B Wilding
Дата выпуска 1995-05-21
dc.description Critical finite-size scaling functions for the order-parameter distribution of the two- and three-dimensional Ising model are investigated. Within a recently introduced classification theory of phase transitions the universal part of critical finite-size scaling functions has been derived by employing a scaling limit which differs from the traditional finite-size scaling limit. In this paper the analytical predictions are compared with Monte Carlo simulation results. We find good agreement between the analytical expression and the simulation results. The agreement is consistent with the possibility that the functional form of the critical finite-size scaling function for the order-parameter distribution is determined uniquely by only a few universal parameters, most notably the equation of state exponent.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Are critical finite-size scaling functions calculable from knowledge of an appropriate critical exponent?
Тип lett
DOI 10.1088/0305-4470/28/10/001
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 28
Первая страница L281
Последняя страница L286
Аффилиация R Hilfer; Inst. fur Phys., Mainz Univ., Germany
Аффилиация N B Wilding; Inst. fur Phys., Mainz Univ., Germany
Выпуск 10

Скрыть метаданые