Автор |
G E Arutuynov |
Автор |
A P Isaev |
Автор |
Z Popowicz |
Дата выпуска |
1995-08-07 |
dc.description |
We investigate the possibility of constructing bicovariant differential calculi on quantum groups SO<sub>q</sub>(N) and Sp<sub>q</sub>(N) as a quantization of an underlying bicovariant bracket. We show that, in contrast to the GL(N) and SL(N) cases, neither of the possible graded SO and Sp bicovariant brackets (associated with a quasitriangular r-matrices) obey the Jacobi identity when the differential forms are Lie algebra-valued. The absence of a classical Poisson structure gives an indication that differential algebras describing bicovariant differential calculi on quantum orthogonal and symplectic groups are not of Poincare-Birkhoff-Witt type. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Poincare-Birkhoff-Witt property for bicovariant differential algebras on simple quantum groups |
Тип |
paper |
DOI |
10.1088/0305-4470/28/15/015 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
28 |
Первая страница |
4349 |
Последняя страница |
4359 |
Аффилиация |
G E Arutuynov; Steklov Math. Inst., Moscow, Russia |
Аффилиация |
A P Isaev; Steklov Math. Inst., Moscow, Russia |
Аффилиация |
Z Popowicz; Steklov Math. Inst., Moscow, Russia |
Выпуск |
15 |