Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор G E Arutuynov
Автор A P Isaev
Автор Z Popowicz
Дата выпуска 1995-08-07
dc.description We investigate the possibility of constructing bicovariant differential calculi on quantum groups SO<sub>q</sub>(N) and Sp<sub>q</sub>(N) as a quantization of an underlying bicovariant bracket. We show that, in contrast to the GL(N) and SL(N) cases, neither of the possible graded SO and Sp bicovariant brackets (associated with a quasitriangular r-matrices) obey the Jacobi identity when the differential forms are Lie algebra-valued. The absence of a classical Poisson structure gives an indication that differential algebras describing bicovariant differential calculi on quantum orthogonal and symplectic groups are not of Poincare-Birkhoff-Witt type.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Poincare-Birkhoff-Witt property for bicovariant differential algebras on simple quantum groups
Тип paper
DOI 10.1088/0305-4470/28/15/015
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 28
Первая страница 4349
Последняя страница 4359
Аффилиация G E Arutuynov; Steklov Math. Inst., Moscow, Russia
Аффилиация A P Isaev; Steklov Math. Inst., Moscow, Russia
Аффилиация Z Popowicz; Steklov Math. Inst., Moscow, Russia
Выпуск 15

Скрыть метаданые