Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Yu N Demkov
Автор P B Kurasov
Автор V N Ostrovsky
Дата выпуска 1995-08-07
dc.description The time-dependent matrix Schrodinger equation 1/ic( delta Psi / delta t)=H(t) Psi describing two bands of an infinite number of equidistant states with different energy spacings omega <sub>+or-</sub> in each band is studied. Both bands are linearly dependent on time t. The interaction upsilon =( square root ( omega - omega +)/ pi )tan pi s between the bands is considered to be equal for any pair of states from each band. Using the Fourier series transformation the instant eigenvalues E(t, s) are calculated which reveal the double periodicity in the energy-time plane. The corresponding eigenvalue surface in the (E, t, s)-space, apart from the triple periodicity, shows quite unexpected symmetry properties relative to the exchange of t and s, and relative to some inversions in the (E, t) plane. The latter one leads to a new equivalence between weak and strong coupling, a new kind of pseudocrossing and a new concept of antidiabatic states. The Fourier transformation reduces the problem to a 2*2 first-order differential operator. The diagonalization of H(r) for fixed t produces explicit expressions for the eigenvalues (adiabatic potential curves) and eigenstates (adiabatic basis). The time evolution operator is calculated both in the diabatic and adiabatic representations. The results are simplified for the special value of the interaction parameter.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Doubly periodical in time and energy exactly soluble system with two interacting systems of states
Тип paper
DOI 10.1088/0305-4470/28/15/016
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 28
Первая страница 4361
Последняя страница 4380
Аффилиация Yu N Demkov; Inst. of Phys., St. Petersburg Univ., Russia
Аффилиация P B Kurasov; Inst. of Phys., St. Petersburg Univ., Russia
Аффилиация V N Ostrovsky; Inst. of Phys., St. Petersburg Univ., Russia
Выпуск 15

Скрыть метаданые