Автор |
J Daboul |
Автор |
M A Marchiolli |
Автор |
S S Mizrahi |
Дата выпуска |
1995-08-21 |
dc.description |
We show that the projection operator mod pq;ye<sup>i phi </sup>)(ye<sup>i phi </sup>;pq mod , where mod pq;ye<sup>i phi </sup>) is a squeezed state, obeys a partial differential equation in which the squeeze parameter y plays the role of time. It follows that related functions, such as the probability distribution functions and the Wigner function are solutions of this equation. This equation will be called a pseudodiffusion equation, because it resembles a diffusion equation in Minkowski space. We give general solutions of the pseudo-diffusion equation, first by the method of separation of variables and then by the Fourier transform method, and discuss the limitations of the latter method. The Fourier method is used to introduce squeezing into the number states, the thermal light and the Wigner function. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
General solutions of the pseudo-diffusion equation of squeezed states |
Тип |
paper |
DOI |
10.1088/0305-4470/28/16/019 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
28 |
Первая страница |
4623 |
Последняя страница |
4637 |
Аффилиация |
J Daboul; Dept. of Phys., Ben Gurion Univ. of the Negev, Beer Sheva, Israel |
Аффилиация |
M A Marchiolli; Dept. of Phys., Ben Gurion Univ. of the Negev, Beer Sheva, Israel |
Аффилиация |
S S Mizrahi; Dept. of Phys., Ben Gurion Univ. of the Negev, Beer Sheva, Israel |
Выпуск |
16 |