Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор J Daboul
Автор M A Marchiolli
Автор S S Mizrahi
Дата выпуска 1995-08-21
dc.description We show that the projection operator mod pq;ye<sup>i phi </sup>)(ye<sup>i phi </sup>;pq mod , where mod pq;ye<sup>i phi </sup>) is a squeezed state, obeys a partial differential equation in which the squeeze parameter y plays the role of time. It follows that related functions, such as the probability distribution functions and the Wigner function are solutions of this equation. This equation will be called a pseudodiffusion equation, because it resembles a diffusion equation in Minkowski space. We give general solutions of the pseudo-diffusion equation, first by the method of separation of variables and then by the Fourier transform method, and discuss the limitations of the latter method. The Fourier method is used to introduce squeezing into the number states, the thermal light and the Wigner function.
Формат application.pdf
Издатель Institute of Physics Publishing
Название General solutions of the pseudo-diffusion equation of squeezed states
Тип paper
DOI 10.1088/0305-4470/28/16/019
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 28
Первая страница 4623
Последняя страница 4637
Аффилиация J Daboul; Dept. of Phys., Ben Gurion Univ. of the Negev, Beer Sheva, Israel
Аффилиация M A Marchiolli; Dept. of Phys., Ben Gurion Univ. of the Negev, Beer Sheva, Israel
Аффилиация S S Mizrahi; Dept. of Phys., Ben Gurion Univ. of the Negev, Beer Sheva, Israel
Выпуск 16

Скрыть метаданые