Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор V B Kuznetsov
Автор M F Jorgensen
Автор P L Christiansen
Дата выпуска 1995-08-21
dc.description New boundary conditions for classical integrable nonlinear lattices of the XXX type, such as the Heisenberg chain and the Toda lattice, are presented. These integrable extensions are formulated in terms of a generic XXX Heisenberg magnet interacting with two additional spins at each end of the chain. The construction uses the most general rank-1 ansatz for the 2*2 L-operator satisfying the reflection equation algebra with rational r-matrix. The associated quadratic algebra is shown to be that of dynamical symmetry for the A<sub>1</sub> and BC<sub>2</sub> Calogero-Moser problems. Other physical realizations of our quadratic algebra are also considered.
Формат application.pdf
Издатель Institute of Physics Publishing
Название New boundary conditions for integrable lattices
Тип paper
DOI 10.1088/0305-4470/28/16/020
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 28
Первая страница 4639
Последняя страница 4654
Аффилиация V B Kuznetsov; Fac. voor Wiskunde en Inf., Amsterdam Univ., Netherlands
Аффилиация M F Jorgensen; Fac. voor Wiskunde en Inf., Amsterdam Univ., Netherlands
Аффилиация P L Christiansen; Fac. voor Wiskunde en Inf., Amsterdam Univ., Netherlands
Выпуск 16

Скрыть метаданые