Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор V E Adler
Автор I T Habibullin
Дата выпуска 1995-12-07
dc.description The problem of construction of the boundary conditions for the Toda lattice compatible with its higher symmetries is considered. It is demonstrated that this problem is reduced to finding the differential constraints consistent with the ZS-AKNS hierarchy. A method of their construction is offered based on the Backlund transformations. It is shown that the generalized Toda lattices corresponding to the non-exceptional Lie algebras of finite growth can be obtained by imposing one of the four simplest integrable boundary conditions on both ends of the lattice. This fact allows, in particular, the solution of the reduction problem of the series A Toda lattices into the series D lattices. Deformations of the found boundary conditions are presented which lead to the Painleve-type equations.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Integrable boundary conditions for the Toda lattice
Тип paper
DOI 10.1088/0305-4470/28/23/021
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 28
Первая страница 6717
Последняя страница 6729
Аффилиация V E Adler; Acad. of Sci., Ufa, Russia
Аффилиация I T Habibullin; Acad. of Sci., Ufa, Russia
Выпуск 23

Скрыть метаданые