Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Feng Pan
Автор Lianrong Dai
Дата выпуска 1996-09-21
dc.description A new method for deriving universal matrices from braid-group representation is discussed. In this case, universal operators can be defined and expressed in terms of products of braid-group generators. The advantage of this method is that matrix elements of are rank independent, and leaves multiplicity problem-concerning coproducts of the corresponding quantum groups untouched. As examples, -matrix elements of , , , and with multiplicity two for -type and for -type, -type, and -type quantum groups, which are related to Hecke algebra and Birman - Wenzl algebra, respectively, are derived by using this method.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Braid-group approach to the derivation of universal matrices
Тип paper
DOI 10.1088/0305-4470/29/18/031
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 29
Первая страница 6043
Последняя страница 6057
Выпуск 18

Скрыть метаданые