| Автор | Francisco Guil |
| Автор | Manuel Mañas |
| Дата выпуска | 1996-02-07 |
| dc.description | The propagator for the 2D heat equation in an arbitrary linear space is shown to give solutions of the two-component Kadomtsev - Petviashvilii (KP) equations, also called Davey - Stewartson system. This propagator is subject to the Klein - Gordon equation and its right-derivatives are required to be of rank one, that imply that it can be expressed in terms of solutions of the Dirac equation. Large families of solutions of the two-component Kadomtsev - Petviashvilii equations are constructed in terms of solutions of the heat and Dirac equations. Particular attention is paid to the real reductions of the Davey - Stewartson type, recovering in this way the line solitons and the multidromion solutions. Moreover, new solutions to the Davey - Stewartson I are presented as massive deformations of the dromion. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | The Dirac equation and integrable systems of KP type |
| Тип | paper |
| DOI | 10.1088/0305-4470/29/3/016 |
| Print ISSN | 0305-4470 |
| Журнал | Journal of Physics A: Mathematical and General |
| Том | 29 |
| Первая страница | 641 |
| Последняя страница | 665 |
| Аффилиация | Francisco Guil; Departamento de Física Teórica, Universidad Complutense, E28040-Madrid, Spain |
| Аффилиация | Manuel Mañas; Departamento de Física Teórica, Universidad Complutense, E28040-Madrid, Spain |
| Выпуск | 3 |