Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Francisco Guil
Автор Manuel Mañas
Дата выпуска 1996-02-07
dc.description The propagator for the 2D heat equation in an arbitrary linear space is shown to give solutions of the two-component Kadomtsev - Petviashvilii (KP) equations, also called Davey - Stewartson system. This propagator is subject to the Klein - Gordon equation and its right-derivatives are required to be of rank one, that imply that it can be expressed in terms of solutions of the Dirac equation. Large families of solutions of the two-component Kadomtsev - Petviashvilii equations are constructed in terms of solutions of the heat and Dirac equations. Particular attention is paid to the real reductions of the Davey - Stewartson type, recovering in this way the line solitons and the multidromion solutions. Moreover, new solutions to the Davey - Stewartson I are presented as massive deformations of the dromion.
Формат application.pdf
Издатель Institute of Physics Publishing
Название The Dirac equation and integrable systems of KP type
Тип paper
DOI 10.1088/0305-4470/29/3/016
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 29
Первая страница 641
Последняя страница 665
Аффилиация Francisco Guil; Departamento de Física Teórica, Universidad Complutense, E28040-Madrid, Spain
Аффилиация Manuel Mañas; Departamento de Física Teórica, Universidad Complutense, E28040-Madrid, Spain
Выпуск 3

Скрыть метаданые