Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор D R C Dominguez
Автор W K Theumann
Дата выпуска 1996-02-21
dc.description The generalization ability of an extremely dilute feedback neural network with multi-state neurons is studied by means of a deterministic noiseless parallel dynamics. The overlap with any one of a macroscopic number of binary, full activity, concepts is determined when the network is trained with examples of variable activity according to a Hebbian learning algorithm that favours stable symmetric mixture states. Explicit results about the phase diagram and the generalization error are obtained for a network with three-state neurons which remain inactive below a threshold . It is shown that the generalization ability can be considerably enhanced either by training the network with low-activity examples or by means of a moderate increase in .
Формат application.pdf
Издатель Institute of Physics Publishing
Название Generalization in a multi-state neural network
Тип paper
DOI 10.1088/0305-4470/29/4/006
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 29
Первая страница 749
Последняя страница 761
Выпуск 4

Скрыть метаданые