Автор |
Thomas Vojta |
Дата выпуска |
1997-01-07 |
dc.description |
We investigate how the time evolution of different kinetic Ising models depends on the initial conditions of the dynamics. To this end we consider the simultaneous evolution of two identical systems subjected to the same thermal noise. We derive a master equation for the time evolution of a joint probability distribution of the two systems. This equation is then solved within an effective-field approach. By analysing the fixed points of the master equation and their stability we identify regular and chaotic phases. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Damage spreading and dynamic stability of kinetic Ising models |
Тип |
lett |
DOI |
10.1088/0305-4470/30/1/002 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
30 |
Первая страница |
L7 |
Последняя страница |
L13 |
Аффилиация |
Thomas Vojta; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA; Institut für Physik, TU Chemnitz-Zwickau, D-09107 Chemnitz, Germany |
Выпуск |
1 |