Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Per Dahlqvist
Дата выпуска 1997-06-07
dc.description The topological pressure is obtained as the leading zero of a dynamical zeta function. We consider the problem of computing this zero when it is close to a singularity. In particular we study a family of intermittent maps, which we argue exhibit a branch point singularity in its zeta functions. The convergence of the cycle expansion close to this point is extremely slow. To deal with this problem we consider a resummation of the cycle expansion. The idea is quite similar to that of Padé approximants, but the ansatz is a generalized series expansion around the branch point rather than a rational function. The improvement on convergence of the leading zero is considerable. We also briefly discuss the relation between correlation decay and the nature of the branch point.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Computing the topological pressure for intermittent maps
Тип lett
DOI 10.1088/0305-4470/30/11/002
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 30
Первая страница L351
Последняя страница L358
Аффилиация Per Dahlqvist; Mechanics Department, Royal Institute of Technology, S-100 44 Stockholm, Sweden
Выпуск 11

Скрыть метаданые