Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Michael J Kearney
Автор Vincent M Dwyer
Автор Paul C Bressloff
Дата выпуска 1997-06-21
dc.description We consider a class of random geometric series with an underlying tree-like structure that has a number of applications in statistical physics. Convergence criteria for these series are discussed and consistency with different criteria known to hold in the one-dimensional limit is established. A multiplicative, two-component model of percolation on a Cayley tree is defined and analysed. The order of the percolation transition and certain critical exponents are altered compared to conventional bond percolation.
Формат application.pdf
Издатель Institute of Physics Publishing
Название On the convergence of a class of random geometric series with application to random walks and percolation theory
Тип lett
DOI 10.1088/0305-4470/30/12/003
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 30
Первая страница L409
Последняя страница L414
Выпуск 12

Скрыть метаданые