| Автор | F A C C Chalub |
| Автор | F D A Aarão Reis |
| Автор | R Riera |
| Дата выпуска | 1997-06-21 |
| dc.description | Using a graph counting technique suitable for regular fractals, an exact evaluation of the total number of embeddings of self-avoiding walks on the generalized Sierpinski gasket is obtained. Numerical estimates for the connective constants are quoted for the first time, where b is the generation parameter of the gaskets. It is shown that the number of distinct n-step SAWs per site converges to the triangular lattice values when . Our analysis indicates that converges to the Euclidean value in the same limit and an asymptotic expression is given. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | Connective constant of SAWs on the Sierpinski gasket family |
| Тип | paper |
| DOI | 10.1088/0305-4470/30/12/007 |
| Print ISSN | 0305-4470 |
| Журнал | Journal of Physics A: Mathematical and General |
| Том | 30 |
| Первая страница | 4151 |
| Последняя страница | 4160 |
| Выпуск | 12 |