Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Carlos R Handy
Автор Romain Murenzi
Дата выпуска 1997-07-07
dc.description Given a one-dimensional Sturm - Liouville Schrödinger problem with rational polynomial potential, we can generate the continuous wavelet transform (CWT) for its discrete states, thereby permitting the systematic multiscale reconstruction of the corresponding bound-state wavefunction. A key component in this is the use of properly dilated (a) and translated (b) moments, , which readily transform the configuration space Hamiltonian into a finite set of dynamically coupled, linear, first-order differential equations in the dilation-related variable, : The infinite scale problem is readily solved through moment quantization methods and used to generate the moments at all scales. We demonstrate the essentials through the rational fraction potential, , and the Coulomb potential.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Continuous wavelet transform analysis of quantum systems with rational potentials
Тип paper
DOI 10.1088/0305-4470/30/13/022
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 30
Первая страница 4709
Последняя страница 4729
Выпуск 13

Скрыть метаданые