Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Carlo Alabiso
Автор Mario Casartelli
Дата выпуска 1997-10-21
dc.description We consider curvatures of all orders, as defined by the generalized Frenet - Serret formulae, along the trajectories of a classical Hamiltonian system with N degrees of freedom. In the spirit of previous experiments on the first two of them, time averages are numerically computed for the curvatures up to fifth order and for the microcanonical density in a typical anharmonic system (the FPU quartic chain), with checks in other models. Neat breakdowns of harmonic-like behaviour define thresholds to anharmonicity for every at distinct values of the order parameter (the energy density u). The threshold at fixed order i is independent of the total N, and it rapidly decreases as i grows. However, all curvatures are simultaneously sensitive or not to the initial conditions, for or respectively, confirming the previous identification of as an efficient indicator of the strong stochasticity transition. This phenomenology, which is discussed within the weak/strong stochasticity problem, gives a new insight into the progressive enforcement of a harmonic-like structure as u decreases.
Формат application.pdf
Издатель Institute of Physics Publishing
Название High-order curvatures and harmonicity regression
Тип paper
DOI 10.1088/0305-4470/30/20/008
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 30
Первая страница 7009
Последняя страница 7020
Аффилиация Carlo Alabiso; Dipartimento di Fisica dell'Università di Parma, 43100 Parma, Italy
Аффилиация Mario Casartelli; Dipartimento di Fisica dell'Università di Parma, 43100 Parma, Italy
Выпуск 20

Скрыть метаданые