Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Magnus Rattray
Автор David Saad
Дата выпуска 1997-11-21
dc.description We present a method for determining the globally optimal on-line learning rule for a soft committee machine under a statistical mechanics framework. This rule maximizes the total reduction in generalization error over the whole learning process. A simple example demonstrates that the locally optimal rule, which maximizes the rate of decrease in generalization error, may perform poorly in comparison.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Globally optimal on-line learning rules for multi-layer neural networks
Тип lett
DOI 10.1088/0305-4470/30/22/005
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 30
Первая страница L771
Последняя страница L776
Аффилиация Magnus Rattray; Department of Computer Science and Applied Mathematics, Aston University, Birmingham B4 7ET, UK
Аффилиация David Saad; Department of Computer Science and Applied Mathematics, Aston University, Birmingham B4 7ET, UK
Выпуск 22

Скрыть метаданые