Автор |
Magnus Rattray |
Автор |
David Saad |
Дата выпуска |
1997-11-21 |
dc.description |
We present a method for determining the globally optimal on-line learning rule for a soft committee machine under a statistical mechanics framework. This rule maximizes the total reduction in generalization error over the whole learning process. A simple example demonstrates that the locally optimal rule, which maximizes the rate of decrease in generalization error, may perform poorly in comparison. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Globally optimal on-line learning rules for multi-layer neural networks |
Тип |
lett |
DOI |
10.1088/0305-4470/30/22/005 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
30 |
Первая страница |
L771 |
Последняя страница |
L776 |
Аффилиация |
Magnus Rattray; Department of Computer Science and Applied Mathematics, Aston University, Birmingham B4 7ET, UK |
Аффилиация |
David Saad; Department of Computer Science and Applied Mathematics, Aston University, Birmingham B4 7ET, UK |
Выпуск |
22 |