Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор R Z Zhdanov
Дата выпуска 1997-12-21
dc.description We suggest a generalization of the Lie algebraic approach for constructing quasi-exactly solvable one-dimensional Schrödinger equations. This generalization is based on representations of Lie algebras by first-order matrix differential operators. We have classified inequivalent representations of the Lie algebras of dimensions up to three by first-order matrix differential operators in one variable. Next we describe invariant finite-dimensional subspaces of the representation spaces of the one-, two-dimensional Lie algebras and of the algebra . These results enable us to construct multiparameter families of first- and second-order quasi-exactly solvable models. In particular, we have obtained two classes of quasi-exactly solvable matrix Schrödinger equations.
Формат application.pdf
Издатель Institute of Physics Publishing
Название On algebraic classification of quasi-exactly solvable matrix models
Тип paper
DOI 10.1088/0305-4470/30/24/034
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 30
Первая страница 8761
Последняя страница 8770
Аффилиация R Z Zhdanov; Institute of Mathematics, 3 Tereshchenkivska Street, 252004 Kiev, Ukraine
Выпуск 24

Скрыть метаданые