Автор |
Miloslav Znojil |
Дата выпуска |
1997-12-21 |
dc.description |
Within the framework of perturbation theory we propose, firstly, an iterative method which may serve as a source of optimal unperturbed solutions in both one and more dimensions. It combines the Runge - Kutta and Newton algorithm and its efficiency is illustrated on a few quartic oscillators. Secondly, admitting also an arbitrary perturbation of potentials we generalize the existing Runge - Kutta one-dimensional Rayleigh - Schrödinger constructions of energies and wavefunctions to more dimensions. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
A quick perturbative method for Schrödinger equations |
Тип |
paper |
DOI |
10.1088/0305-4470/30/24/035 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
30 |
Первая страница |
8771 |
Последняя страница |
8783 |
Аффилиация |
Miloslav Znojil; Ústav jaderné fyziky AV CR, 250 68 Rez, Czech Republic |
Выпуск |
24 |