Автор |
Tore M Jonassen |
Дата выпуска |
1997-02-07 |
dc.description |
We define the n-lift of a one-dimensional system . The n-lift can be thought of as a perturbation of the one-dimensional system depending on the state of the system n-1 time-steps back. We prove that certain f-invariant Cantor sets give invariant Cantor sets in the lifted system. We prove that if f has an invariant hyperbolic Cantor set then the lifted system has an invariant hyperbolic Cantor set provided the derivatives of f obey a simple condition. We also prove that hyperbolicity is preserved if the same conditions on the derivatives of f hold. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Lifts of one-dimensional systems: I. Hyperbolic behaviour |
Тип |
paper |
DOI |
10.1088/0305-4470/30/3/018 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
30 |
Первая страница |
937 |
Последняя страница |
948 |
Аффилиация |
Tore M Jonassen; Oslo College, Faculty of Engineering, Cort Adelersgt. 30, N-0254 Oslo, Norway |
Выпуск |
3 |