Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор John Neergaard
Автор Marcel den Nijs
Дата выпуска 1997-03-21
dc.description Stationary states in KPZ-type growth have interesting short distance properties. We find that typically they are skewed and lack particle-hole symmetry. For example, hill-tops are typically flatter than valley-bottoms, and all odd moments of the height distribution function are non-zero. Stationary-state skewness can be turned on and off in the (1 + 1)-dimensional restricted solid-on-solid (RSOS) model. We construct the exact stationary state for its master equation in a four-dimensional parameter space. In this state steps are completely uncorrelated. Familiar models such as the Kim - Kosterlitz model lie outside this space, and their stationary states are skewed. We demonstrate using finite size scaling that the skewness diverges with systems size, but such that the skewness operator is irrelevant in (1 + 1) dimensions, with an exponent , and that the KPZ fixed point lies at zero-skewness.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Stationary-state skewness in KPZ-type growth
Тип paper
DOI 10.1088/0305-4470/30/6/019
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 30
Первая страница 1935
Последняя страница 1952
Аффилиация John Neergaard; Department of Physics, University of Washington, Seattle, WA 98195, USA
Аффилиация Marcel den Nijs; Department of Physics, University of Washington, Seattle, WA 98195, USA
Выпуск 6

Скрыть метаданые