Автор |
Malte Henkel |
Автор |
Dragi Karevski |
Дата выпуска |
1998-03-13 |
dc.description |
A new realization of the conformal algebra is studied which mimics the behaviour of a statistical system on a discrete albeit infinite lattice. The two-point function is found from the requirement that it transforms covariantly under this realization. The result is in agreement with explicit lattice calculations of the (1 + 1)-dimensional Ising model and the d-dimensional spherical model. A hard core is found which is not present in the continuum. For a semi-infinite lattice, profiles are also obtained. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Lattice two-point functions and conformal invariance |
Тип |
note |
DOI |
10.1088/0305-4470/31/10/022 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
31 |
Первая страница |
2503 |
Последняя страница |
2507 |
Аффилиация |
Malte Henkel; Laboratoire de Physique des Matériaux, Université Henri Poincaré (Nancy I), BP 239, F-54506 Vandoeuvre lès Nancy Cedex, France |
Аффилиация |
Dragi Karevski; Laboratoire de Physique des Matériaux, Université Henri Poincaré (Nancy I), BP 239, F-54506 Vandoeuvre lès Nancy Cedex, France |
Выпуск |
10 |