| Автор | Malte Henkel |
| Автор | Dragi Karevski |
| Дата выпуска | 1998-03-13 |
| dc.description | A new realization of the conformal algebra is studied which mimics the behaviour of a statistical system on a discrete albeit infinite lattice. The two-point function is found from the requirement that it transforms covariantly under this realization. The result is in agreement with explicit lattice calculations of the (1 + 1)-dimensional Ising model and the d-dimensional spherical model. A hard core is found which is not present in the continuum. For a semi-infinite lattice, profiles are also obtained. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | Lattice two-point functions and conformal invariance |
| Тип | note |
| DOI | 10.1088/0305-4470/31/10/022 |
| Print ISSN | 0305-4470 |
| Журнал | Journal of Physics A: Mathematical and General |
| Том | 31 |
| Первая страница | 2503 |
| Последняя страница | 2507 |
| Аффилиация | Malte Henkel; Laboratoire de Physique des Matériaux, Université Henri Poincaré (Nancy I), BP 239, F-54506 Vandoeuvre lès Nancy Cedex, France |
| Аффилиация | Dragi Karevski; Laboratoire de Physique des Matériaux, Université Henri Poincaré (Nancy I), BP 239, F-54506 Vandoeuvre lès Nancy Cedex, France |
| Выпуск | 10 |