Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Malte Henkel
Автор Dragi Karevski
Дата выпуска 1998-03-13
dc.description A new realization of the conformal algebra is studied which mimics the behaviour of a statistical system on a discrete albeit infinite lattice. The two-point function is found from the requirement that it transforms covariantly under this realization. The result is in agreement with explicit lattice calculations of the (1 + 1)-dimensional Ising model and the d-dimensional spherical model. A hard core is found which is not present in the continuum. For a semi-infinite lattice, profiles are also obtained.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Lattice two-point functions and conformal invariance
Тип note
DOI 10.1088/0305-4470/31/10/022
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 31
Первая страница 2503
Последняя страница 2507
Аффилиация Malte Henkel; Laboratoire de Physique des Matériaux, Université Henri Poincaré (Nancy I), BP 239, F-54506 Vandoeuvre lès Nancy Cedex, France
Аффилиация Dragi Karevski; Laboratoire de Physique des Matériaux, Université Henri Poincaré (Nancy I), BP 239, F-54506 Vandoeuvre lès Nancy Cedex, France
Выпуск 10

Скрыть метаданые