Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Nino Boccara
Автор Henryk Fuks
Дата выпуска 1998-07-17
dc.description This paper shows how to determine all of the unidimensional two-state cellular automaton rules of a given number of inputs which conserve the number of active sites. These rules have to satisfy a necessary and sufficient condition. If the active sites are viewed as cells occupied by identical particles, these cellular automaton rules represent evolution operators of systems of identical interacting particles whose total number is conserved. Some of these rules, which allow motion in both directions, mimic ensembles of one-dimensional pseudorandom walkers. Numerical evidence indicates that the corresponding stochastic processes might be non-Gaussian.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Cellular automaton rules conserving the number of active sites
Тип paper
DOI 10.1088/0305-4470/31/28/014
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 31
Первая страница 6007
Последняя страница 6018
Аффилиация Nino Boccara; University of Illinois at Chicago, Department of Physics, Chicago, IL 60607-7059, USA
Аффилиация Henryk Fuks; University of Illinois at Chicago, Department of Physics, Chicago, IL 60607-7059, USA
Выпуск 28

Скрыть метаданые