Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Josep M Porrà
Автор Santos B Yuste
Дата выпуска 1998-08-07
dc.description Random walks on some fractals can be analysed by renormalization procedures. These techniques make it possible to obtain the Laplace transform of the first-passage time probability density function of a random walker that moves in the fractal. The calculation depends on a function that is particular to each kind of fractal. For the Sierpinski family of fractals, it has been conjectured that , where d is the dimension of the Euclidean space in which the Sierpinski fractal is embedded. We provide a proof of the conjecture that is based on the symmetries of the Sierpinski fractal.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Demonstration of a conjecture for random walks in d-dimensional Sierpinski fractals
Тип paper
DOI 10.1088/0305-4470/31/31/006
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 31
Первая страница 6589
Последняя страница 6593
Выпуск 31

Скрыть метаданые