Автор |
Josep M Porrà |
Автор |
Santos B Yuste |
Дата выпуска |
1998-08-07 |
dc.description |
Random walks on some fractals can be analysed by renormalization procedures. These techniques make it possible to obtain the Laplace transform of the first-passage time probability density function of a random walker that moves in the fractal. The calculation depends on a function that is particular to each kind of fractal. For the Sierpinski family of fractals, it has been conjectured that , where d is the dimension of the Euclidean space in which the Sierpinski fractal is embedded. We provide a proof of the conjecture that is based on the symmetries of the Sierpinski fractal. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Demonstration of a conjecture for random walks in d-dimensional Sierpinski fractals |
Тип |
paper |
DOI |
10.1088/0305-4470/31/31/006 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
31 |
Первая страница |
6589 |
Последняя страница |
6593 |
Выпуск |
31 |