Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Hyoungsoo Yoon
Автор Jong-Hoon Oh
Дата выпуска 1998-09-25
dc.description We study learning from examples by higher-order perceptrons, which realize polynomially separable rules. The model complexities of the networks are made `tunable' by varying the relative orders of different monomial terms. We analyse the learning curves of higher-order perceptrons when the Gibbs algorithm is used for training. It is found that learning occurs in a stepwise manner. This is because the number of examples needed to constrain the corresponding phase-space component scales differently.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Learning of higher-order perceptrons with tunable complexities
Тип paper
DOI 10.1088/0305-4470/31/38/012
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 31
Первая страница 7771
Последняя страница 7784
Аффилиация Hyoungsoo Yoon; Physics Department and Basic Science Research Institute, Pohang University of Science and Technology, Pohang, South Korea 790-784
Аффилиация Jong-Hoon Oh; Physics Department and Basic Science Research Institute, Pohang University of Science and Technology, Pohang, South Korea 790-784
Выпуск 38

Скрыть метаданые