Автор |
Jean-Jacques Labarthe |
Дата выпуска |
1998-10-30 |
dc.description |
The Racah formula for the SU(2) 6-j coefficient is usually considered as a pure combinatorial formula. A physical interpretation is found for this formula and, more generally, for combinatorial formulae of the 3n-j coefficients. Angular momenta are associated with the points of the finite projective geometry PG where triangular conditions appear as collinearities of points. A 3n-j coefficient corresponds to a subset of PG so that some of the angular momenta are hidden for the 3n-j. The combinatorial formula of the 3n-j is interpreted as the summation over these hidden angular momenta of a highly symmetric `full -J symbol'. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
The hidden angular momenta of Racah and - j coefficients |
Тип |
paper |
DOI |
10.1088/0305-4470/31/43/012 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
31 |
Первая страница |
8689 |
Последняя страница |
8708 |
Аффилиация |
Jean-Jacques Labarthe; Laboratoire Aimé Cotton, Université Paris 11, F91405 Orsay Cedex, France |
Выпуск |
43 |