Vortices in the Landau-Ginzburg model of the quantized Hall effect
M Hassaïne; P A Horváthy; J-C Yera; M Hassaïne; Département de Mathématiques, Université de Tours, Parc de Grandmont, F-37200 Tours, France; P A Horváthy; Département de Mathématiques, Université de Tours, Parc de Grandmont, F-37200 Tours, France; J-C Yera; Département de Mathématiques, Université de Tours, Parc de Grandmont, F-37200 Tours, France
Журнал:
Journal of Physics A: Mathematical and General
Дата:
1998-11-13
Аннотация:
The `Landau-Ginzburg' theory of Girvin and MacDonald, modified by adding the natural magnetic term, is shown to admit stable topological as well as non-topological vortex solutions. The system is the common λ→0 limit of two slightly different non-relativistic Maxwell-Chern-Simons models of the type recently introduced by Manton. The equivalence with the model of Zhang, Hansson and Kivelson is demonstrated.
118.6Кб