Автор |
Rafael Ferraro |
Дата выпуска |
1999-04-02 |
dc.description |
The canonical functional action in the path integral in phase space is discretized by linking each pair of consecutive vertebral points - and or and - through the invariant complete solution of the Hamilton-Jacobi equation associated with the classical path defined by these extremes. When the measure is chosen to reflect the geometrical character of the propagator (it must behave as a density of weight in both of its arguments), the resulting infinitesimal propagator is cast in the form of an expansion in a basis of short-time solutions of the wave equation, associated with the eigenfunctions of the initial momenta canonically conjugated to a set of normal coordinates. The operator ordering induced by this prescription is a combination of a symmetrization rule coming from the phase, and a derivative term coming from the measure. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
The Jacobi principal function in quantum mechanics |
Тип |
paper |
DOI |
10.1088/0305-4470/32/13/010 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
32 |
Первая страница |
2589 |
Последняя страница |
2599 |
Аффилиация |
Rafael Ferraro; Instituto de Astronomía y Física del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires, Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina |
Выпуск |
13 |