Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор S Louies
Автор L Brenig
Дата выпуска 1999-05-28
dc.description This paper is devoted to the study of normal form transformations and resonances. The usual theory of normal forms is formulated in a more general context: the quasi-monomial formalism, in which negative and non-integer exponents are accepted. The general coefficient of the Poincaréseries is explicitly constructed in the non-resonant case, for any QM system. From there arises the necessity to generalize resonances to non-analytical vector fields. Using particular changes of parameterization, we extend this resonance relation to the nonlinear part of the vector field. The changes of variables that arise from this provide approximations of the solutions far from the fixed point.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Structure of normal form series for non-analytical vector fields and generalized resonances
Тип paper
DOI 10.1088/0305-4470/32/21/309
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 32
Первая страница 3959
Последняя страница 3978
Аффилиация S Louies; UniversitéLibre de Bruxelles, Service de Physique Théorique et Mathémathique, CP231, 1050, Brussels, Belgium
Аффилиация L Brenig; UniversitéLibre de Bruxelles, Service de Physique Théorique et Mathémathique, CP231, 1050, Brussels, Belgium
Выпуск 21

Скрыть метаданые