Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Stefan Boettcher
Дата выпуска 1999-07-16
dc.description The benefits of a recently proposed method to approximate hard optimization problems are demonstrated on the graph partitioning problem. The performance of this new method, called extremal optimization (EO), is compared with simulated annealing (SA) in extensive numerical simulations. While generally a complex (NP-hard) problem, the optimization of the graph partitions is particularly difficult for sparse graphs with average connectivities near the percolation threshold. At this threshold, the relative error of SA for large graphs is found to diverge relative to EO at equalized runtime. On the other hand, EO, based on the extremal dynamics of self-organized critical systems, reproduces known results about optimal partitions at this critical point quite well.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Extremal optimization of graph partitioning at the percolation threshold
Тип paper
DOI 10.1088/0305-4470/32/28/302
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 32
Первая страница 5201
Последняя страница 5211
Аффилиация Stefan Boettcher; Physics Department, Emory University, Atlanta, GA 30322, USA; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Выпуск 28

Скрыть метаданые