Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Bruno Apolloni
Автор Egidio Battistini
Автор Diego de Falco
Дата выпуска 1999-07-30
dc.description We examine some aspects of the interface area between mathematical statistics and statistical physics relevant to the study of Boltzmann machines. The Boltzmann machine learning algorithm is based on a variational principle (Gibbs' lemma for relative entropy). This fact suggests the possibility of a scheme of successive approximations: here we consider successive approximations parametrized by the order of many-body interactions among individual units. We prove bounds on the gain in relative entropy in the crucial step of adding, and estimating by Hebb's rule, a new parameter. We address the problem of providing, on the basis of local observations, upper and lower bounds on the entropy. While upper bounds are easily obtained by subadditivity, lower bounds involve localization of Hirschman bounds on a dual quantum system.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Higher-order Boltzmann machines and entropy bounds
Тип paper
DOI 10.1088/0305-4470/32/30/301
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 32
Первая страница 5529
Последняя страница 5538
Выпуск 30

Скрыть метаданые