Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Reimer Kühn
Автор Ion-Olimpiu Stamatescu
Дата выпуска 1999-08-06
dc.description We study a simple learning model based on the Hebb rule to cope with `delayed', unspecific reinforcement. In spite of the unspecific nature of the information-feedback, convergence to asymptotically perfect generalization is observed, with a rate depending, however, in a non-universal way on learning parameters. Asymptotic convergence can be as fast as that of Hebbian learning, but may be slower. Morever, for a certain range of parameter settings, it depends on initial conditions whether the system can reach the regime of asymptotically perfect generalization, or rather approaches a stationary state of poor generalization.
Формат application.pdf
Издатель Institute of Physics Publishing
Название A two-step algorithm for learning from unspecific reinforcement
Тип paper
DOI 10.1088/0305-4470/32/31/301
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 32
Первая страница 5749
Последняя страница 5762
Выпуск 31

Скрыть метаданые