Автор |
Chie Bing Wang |
Дата выпуска |
1999-10-15 |
dc.description |
We consider the polynomials <sub>n</sub>(z) = <sub>n</sub>(z<sup>n</sup>+b<sub>n-1</sub>z<sup>n-1</sup>+...) orthonormal with respect to the weight exp(()<sup>1/2</sup>(z+1/z)) dz/2iz on the unit circle in the complex plane. The leading coefficient <sub>n</sub> is found to satisfy a difference-differential (spatially discrete) equation which is further proved to approach a third-order differential equation by double scaling. The third-order differential equation is equivalent to the Painlevé II equation. The leading coefficient and second leading coefficient of <sub>n</sub>(z) can be expressed asymptotically in terms of the Painlevé II function. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Orthonormal polynomials on the unit circle and spatially discrete PainlevéII equation |
Тип |
paper |
DOI |
10.1088/0305-4470/32/41/312 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
32 |
Первая страница |
7207 |
Последняя страница |
7217 |
Аффилиация |
Chie Bing Wang; Department of Mathematics and Institute of Theoretical Dynamics University of California, Davis, CA 95616, USA |
Выпуск |
41 |