Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Chie Bing Wang
Дата выпуска 1999-10-15
dc.description We consider the polynomials <sub>n</sub>(z) = <sub>n</sub>(z<sup>n</sup>+b<sub>n-1</sub>z<sup>n-1</sup>+...) orthonormal with respect to the weight exp(()<sup>1/2</sup>(z+1/z)) dz/2iz on the unit circle in the complex plane. The leading coefficient <sub>n</sub> is found to satisfy a difference-differential (spatially discrete) equation which is further proved to approach a third-order differential equation by double scaling. The third-order differential equation is equivalent to the Painlevé II equation. The leading coefficient and second leading coefficient of <sub>n</sub>(z) can be expressed asymptotically in terms of the Painlevé II function.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Orthonormal polynomials on the unit circle and spatially discrete PainlevéII equation
Тип paper
DOI 10.1088/0305-4470/32/41/312
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 32
Первая страница 7207
Последняя страница 7217
Аффилиация Chie Bing Wang; Department of Mathematics and Institute of Theoretical Dynamics University of California, Davis, CA 95616, USA
Выпуск 41

Скрыть метаданые