Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Dominik Endres
Автор Peter Riegler
Дата выпуска 1999-12-10
dc.description The special character of certain degrees of freedom in two-layered neural networks is investigated for on-line learning of realizable rules. Our analysis shows that the dynamics of these degrees of freedom can be put on a faster timescale than those remaining, with the profit of speeding up the overall adaptation process. This is shown for two groups of degrees of freedom: second-layer weights and bias weights. For the former case our analysis provides a theoretical explanation of phenomenological findings. The resulting learning algorithm is compared with natural gradient descent in order to check whether the proposed scaling can be naturally derived from that type of learning rule.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Learning dynamics on different timescales
Тип paper
DOI 10.1088/0305-4470/32/49/306
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 32
Первая страница 8655
Последняя страница 8663
Аффилиация Dominik Endres; Institut für Theoretische Physik, Julius-Maximilians-Universität, Am Hubland, D-97074 Würzburg, Germany
Аффилиация Peter Riegler; Institut für Theoretische Physik, Julius-Maximilians-Universität, Am Hubland, D-97074 Würzburg, Germany
Выпуск 49

Скрыть метаданые