Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Sang Bub Lee
Автор Hisao Nakanishi
Дата выпуска 2000-04-21
dc.description We study by Markov chain analysis the random walks on a critical percolation cluster embedded in a four-dimensional hypercubic lattice. We calculate the number of dominant eigenvalues of the transition probability matrix and estimate the spectral and fractal dimensions d<sub>s</sub> and d<sub>w</sub> of random walks from the eigenvalues and their distribution. The estimates of d<sub>s</sub> and d<sub>w</sub> obtained from the data for a given size S of the percolation cluster exhibit some S dependence. Extrapolating the results to S limit, we obtain d<sub>s</sub> = 1.330±0.010 close to the previous result by other methods and a new result d<sub>w</sub> = 4.50±0.15. These values are also confirmed by direct Monte Carlo simulations of random walks on a percolation cluster.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Finite size analysis of eigenvalue spectrum for random walks on a critical percolation cluster in four dimensions
Тип paper
DOI 10.1088/0305-4470/33/15/303
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 33
Первая страница 2943
Последняя страница 2950
Выпуск 15

Скрыть метаданые