| Автор | Sang Bub Lee |
| Автор | Hisao Nakanishi |
| Дата выпуска | 2000-04-21 |
| dc.description | We study by Markov chain analysis the random walks on a critical percolation cluster embedded in a four-dimensional hypercubic lattice. We calculate the number of dominant eigenvalues of the transition probability matrix and estimate the spectral and fractal dimensions d<sub>s</sub> and d<sub>w</sub> of random walks from the eigenvalues and their distribution. The estimates of d<sub>s</sub> and d<sub>w</sub> obtained from the data for a given size S of the percolation cluster exhibit some S dependence. Extrapolating the results to S limit, we obtain d<sub>s</sub> = 1.330±0.010 close to the previous result by other methods and a new result d<sub>w</sub> = 4.50±0.15. These values are also confirmed by direct Monte Carlo simulations of random walks on a percolation cluster. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | Finite size analysis of eigenvalue spectrum for random walks on a critical percolation cluster in four dimensions |
| Тип | paper |
| DOI | 10.1088/0305-4470/33/15/303 |
| Print ISSN | 0305-4470 |
| Журнал | Journal of Physics A: Mathematical and General |
| Том | 33 |
| Первая страница | 2943 |
| Последняя страница | 2950 |
| Выпуск | 15 |