Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Angel Ballesteros
Автор Francisco J Herranz
Автор Preeti Parashar
Дата выпуска 2000-05-05
dc.description All Lie bialgebra structures for the (1+1)-dimensional centrally extended Schrödinger algebra are explicitly derived and proved to be of coboundary type. Therefore, since all of them come from a classical r-matrix, the complete family of Schrödinger Poisson-Lie groups can be deduced by means of the Sklyanin bracket. All possible embeddings of the harmonic oscillator, extended Galilei and gl(2) Lie bialgebras within the Schrödinger classification are studied. As an application, new quantum (Hopf algebra) deformations of the Schrödinger algebra, including their corresponding quantum universal R-matrices, are constructed.
Формат application.pdf
Издатель Institute of Physics Publishing
Название (1+1) Schrödinger Lie bialgebras and their Poisson-Lie groups
Тип paper
DOI 10.1088/0305-4470/33/17/304
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 33
Первая страница 3445
Последняя страница 3465
Аффилиация Angel Ballesteros; Departamento de Física, Universidad de Burgos, Pza Misael Bañuelos, E-09001 Burgos, Spain
Аффилиация Francisco J Herranz; Departamento de Física, Universidad de Burgos, Pza Misael Bañuelos, E-09001 Burgos, Spain
Аффилиация Preeti Parashar; Departamento de Física, Universidad de Burgos, Pza Misael Bañuelos, E-09001 Burgos, Spain
Выпуск 17

Скрыть метаданые