Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор F C Alcaraz
Автор V Rittenberg
Дата выпуска 2000-10-27
dc.description The wavefunctions corresponding to the zero-energy eigenvalue of a one-dimensional quantum chain Hamiltonian can be written in a simple way using quadratic algebras. Hamiltonians describing stochastic processes have stationary states given by such wavefunctions and various quadratic algebras have been found and applied to several diffusion processes. We show that similar methods can also be applied for equilibrium processes. As an example, for a class of q-deformed O(N) symmetric antiferromagnetic quantum chains, we give the zero-energy wavefunctions for periodic boundary conditions corresponding to momenta zero and π. We also consider free and various non-diagonal boundary conditions and give the corresponding wavefunctions. All correlation lengths are derived.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Valence bond ground states in quantum antiferromagnets and quadratic algebras
Тип paper
DOI 10.1088/0305-4470/33/42/301
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 33
Первая страница 7469
Последняя страница 7487
Выпуск 42

Скрыть метаданые