Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Andrzej Okninski
Автор Marek Kus
Дата выпуска 2000-12-08
dc.description Classical linear maps associated with quantum maps are investigated. It is demonstrated that with the help of SU(n) coherent states, SU(n) tensors fulfilling nonlinear identities can be constructed. Nonlinear maps which evolve like linear maps if initial conditions lie on a manifold which is explicitly given are defined and the analogy with the Kolmogorov-Arnold-Moser theorem is discussed. The problem of geometric quantization is also investigated and a geometric relation between the analysed quantum and classical maps is found.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Exactly linearizable maps and SU(n) coherent states
Тип paper
DOI 10.1088/0305-4470/33/48/322
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 33
Первая страница 8917
Последняя страница 8927
Выпуск 48

Скрыть метаданые