Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор V S Gerdjikov
Автор E G Evstatiev
Автор R I Ivanov
Дата выпуска 2000-02-11
dc.description We propose a compact and explicit expression for the solutions of the complex Toda chains related to the classical series of simple Lie algebras . The solutions are parametrized by a minimal set of scattering data for the corresponding Lax matrix. They are expressed as sums over the weight systems of the fundamental representations of and are explicitly covariant under the corresponding Weyl group action. In deriving these results we start from the Moser formula for the A <sub>r </sub> series and obtain the results for the other classical series of Lie algebras by imposing appropriate involutions on the scattering data. Thus we also show how Moser's solution goes into that of Olshanetsky and Perelomov. The results for the large-time asymptotics of the A <sub>r </sub> -CTC solutions are extended to the other classical series B <sub>r </sub> -D <sub>r </sub> . We exhibit also some `irregular' solutions for the D <sub>2n +1</sub> algebras whose asymptotic regimes at t ± are qualitatively different. Interesting examples of bounded and periodic solutions are presented and the relations between the solutions for the algebras D <sub>4</sub> , B <sub>3</sub> and G <sub>2</sub> are analysed.
Формат application.pdf
Издатель Institute of Physics Publishing
Название The complex Toda chains and the simple Lie algebras: II. Explicit solutions and asymptotic behaviour
Тип paper
DOI 10.1088/0305-4470/33/5/312
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 33
Первая страница 975
Последняя страница 1006
Выпуск 5

Скрыть метаданые